Central Angle - Angle with the vertex at the center of the circle

Intercepted Arc - Part of the circle cut out
x by an angle

Dy an anole

Intercepted Arc

Arc Measure

The measure of an arc is equal to the measure of its corresponding central angle.

$$\widehat{mJM} = m \angle JPM$$

Congruent central angles intercept congruent arcs, and congruent arcs are intercepted by congruent central angles.

$$\angle JPK \cong \angle KPL$$
 $\widehat{JK} \cong \widehat{KL}$

What are \widehat{mAB} and \widehat{mACB} ?

SOLUTION

360-95

a. What is \widehat{mXZ} ?

Enter your answer.

b. What is \widehat{mXYZ} ? 360-115

A. How do you find the length s of an arc measured in degrees?

The measure of an arc is a fraction of 360.

The arc length is a fraction of the circumference.

Use a proportion to represent the relationship between arc length s, radius r, and arc measure n.

$$\frac{\text{arc length}}{\text{circumference}} = \frac{\text{arc measure}}{360}$$

$$\frac{s}{2\pi r} = \frac{n}{360}$$

$$s = \frac{n}{360} \cdot 2\pi r$$

$$S = \text{arc length}$$

$$\frac{s}{360} = \frac{n}{360} \cdot 2\pi r$$

$$S = \text{arc length}$$

$$\frac{s}{360} = \frac{n}{360} \cdot 2\pi r$$

The formula to find the length of an arc is $s = \frac{n}{360} \cdot 2\pi r$.

Arc Length

The length *s* of an arc of a circle is the product of the ratio relating the measure of the central angle in degrees to 360 and the circumference of the circle.

Central angle in degrees:

2. a. In a circle with radius 4, what is the length of an arc that has a measure of 80? Round to the nearest tenth.

$$S = \frac{90}{360} \cdot 2\pi c$$

$$= \frac{80}{360} \cdot 2\pi (4)$$

$$= \frac{2}{9} \cdot 8\pi$$

$$= \frac{16\pi}{9} \approx 5.6$$

What is the length of \widehat{AD} ? Express the answer in terms of π .

$$S = \frac{140}{360} \cdot 2\pi(4)$$

$$= \frac{7}{18} \cdot 8\pi$$

$$= \frac{56\pi}{18}$$

$$= \frac{28\pi}{9}$$

A sector of a circle is the region bounded by two radii and the intercepted arc. What is the area of sector MQN?

$$\frac{78}{360} \cdot \pi (10)^{2}$$
 $\frac{13}{60} \cdot 100\pi$
 $\frac{1300\pi}{60} = \frac{65\pi}{3} \text{ cm}^{2}$

Area of a Sector

The area of a sector is $A = \frac{n}{360} \cdot \pi r^2$, where n is the measure of the intercepted arc and r is the radius of the circle.

4. a. What is the area of the sector?

Enter your at
$$A = \frac{165}{360} \cdot \pi(3)^2$$

$$\frac{11}{24} \cdot 9\pi = \frac{99\pi}{24} = \frac{35\pi}{8}$$

CHECK ANSWER

4. b. What is the area of the sector?

Enter your ans
$$\frac{59}{360} \cdot \pi(10)^{3}$$

$$\frac{59}{360} \cdot 100\pi$$

$$\frac{5900\pi}{360} = \frac{215\pi}{18}$$

A segment of a circle is the part of a circle bounded by an arc and the segment joining its endpoints.

What is the area of the shaded region?

5. a. What is the area of the segment?

Enter
$$\frac{90}{360} = \pi (10)^2 - \frac{1}{2} (10)(10) \sin 70^\circ$$

$$\frac{1}{4} = 100\pi - 50 \sin 10$$

$$25\pi - 50 \text{ ft}^2$$

5. b. What is the area of the segment?

Ente 149
$$2\pi\pi (5)^2 - \frac{1}{2}(5)(5) \sin 144$$

$$\frac{2}{5} \cdot 25\pi - \frac{25}{2} \sin 144$$

$$10\pi - 7.35$$

$$24.07 \text{ m}^2$$

6. What is the area and perimeter of sector *QNR*? Round to the nearest tenth.

$$\frac{10\pi}{3} + 4+6$$
 $\frac{10\pi}{3} + 12$
 $\frac{10\pi + 36}{3}$

$$\frac{1011}{3} + \frac{12}{1.3}$$